Problem set 5

Exercise 1. Construct a surjective homomorphism from \mathbb{S}_4 to \mathbb{S}_3 (a surjective map $f: \mathbb{S}_4 \longrightarrow \mathbb{S}_3$, such that $f(\sigma\tau) = f(\sigma)f(\tau)$).

Exercise 2. a)Prove that every Möbius transformation in $PGL_2(\mathbb{C})$ has one or two fixed points. The usual formulation of this fact is that there are two fixed points counted with multiplicity. b)Prove that a square of a transformation $x \longrightarrow \frac{ax+b}{cx+d}$ is the identity if and only if a + d = 0.

Exercise 3. a)Suppose that for a Möbius transformation $f \in PGL_2(\mathbb{C})$ there exists a point a such that $f(a) \neq a$, but f(f(a)) = a. Prove that f is an involution.

b)Prove that every Möbius transformation can be presented as a composition of at most three Möbius involutions.

Problem 1 (Euler's function). Let $n = p_1^{\alpha_1} p_1^{\alpha_1} \dots p_k^{\alpha_k}$ be the prime factorization of n and $\varphi(n)$ be the number of integers from 1 to n, which are coprime to n. Prove that

$$\varphi(n) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\dots\left(1-\frac{1}{p_k}\right).$$

Definition 0.1. Consider a group

 $\mu_n = \{ z \in \mathbb{C} | z^n = 1 \}$

of roots of unity. An *n*-th root of unity is called primitive, if it generates μ_n as a group.

Exercise 4. Prove that primitive n-th roots of unity are numbers $e^{\frac{2\pi k}{n}}$ for (k,n) = 1. Conclude that the order of μ_n is given by the Euler function $\varphi(n)$.

Problem 2.

a) Prove that Euler's function is multiplicative, i. e. for coprime numbers n and m

$$\varphi(nm) = \varphi(n)\varphi(m).$$

b)Prove the following identity:

$$\sum_{d|n} \varphi(d) = n$$

c) Find a new proof of the fact that for $n = p_1^{\alpha_1} p_1^{\alpha_1} \dots p_k^{\alpha_k}$

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right).$$

Problem 3 (Sam Lloyd's 15 puzzle).

Suppose that numbers 1, 2, 3, ..., 15 and "blank" are arranged in a 4×4 grid. A legal move is to swap the empty cell ("blank") with an adjacent cell. Prove that it is not possible to go through legal moves from

2	1	3	4		1	2	3	4
5	6	$\tilde{\gamma}$	8	,	5	6	$\tilde{7}$	8
9	10	11	12	to	9	10	11	12
13	14	15			13	14	15	

Problem 4. Circles S_1, S_2, \ldots, S_n are tangent to two circles R_1 and R_2 . Moreover, S_1 is tangent to S_2 at A_1 , S_2 is tangent to S_3 at A_2, \ldots, S_{n-1} is tangent to S_n at A_{n-1} . Prove that points A_1, A_2, \ldots, A_n lie on the same circle.